Answer on Question\#50178 - Chemistry - Physical Chemistry

For the ques :- PH of 10 * $10^{\wedge}(-8)$ of HCL . the solution given is
$[\mathrm{H}+]$ total $=[\mathrm{H}+]$ acid $+[\mathrm{H}+]$ water
Since HCl is a strong acid and is completely ionized
[$\mathrm{H}+] \mathrm{HCl}=1.0 \times 10-8$
The concentration of $\mathrm{H}+$ from ionization is equal to the [$\mathrm{OH}-]$ from water,
$[\mathrm{H}+\mathrm{H} 2 \mathrm{O}=[\mathrm{OH}-] \mathrm{H} 2 \mathrm{O}$
= x (say)
$[\mathrm{H}+]$ total $=1.0 \times 10-8+\mathrm{x}$
But
$[\mathrm{H}+][\mathrm{OH}-]=1.0 \times 10-14$
$(1.0 \times 10-8+x)(x)=1.0 \times 10-14$
$X 2+10-8 x-10-14=0$
Solving for x, we get $x=9.5 \times 10-8$
Therefore,
$[H+]=1.0 \times 10-8+9.5 \times 10-8$
$=10.5 \times 10-8$
$=1.05 \times 10-7$
$\mathrm{pH}=-\log [\mathrm{H}+]=-\log (1.05 \times 10-7)=6.98$
so, $x=[\mathrm{OH}-]=9.5 \times 10-8$, so, POH is 7.02
But If it is so what would be the case for $10^{*}-7 \mathrm{M}$ of $\mathrm{HCL}, \mathrm{x}=[\mathrm{OH}-]$ would be $1.6 \times 10-7$ and POH <7, BUT HOW IT IS POSSIBLE as it cant be less than 7 and PH-POH=PH would be more than 7. HOW it is possible?

Solution

True pH of $10^{-7} \mathrm{M} \mathrm{HCl}$ is 6.79 . The reason you got wrong answer is that you calculated wrong root of the quadratic equation.

We replace 10^{-8} with 10^{-7} and start from the red line for $10^{-7} \mathrm{M} \mathrm{HCl}$:
$x^{2}+10^{-7} x-10^{-14}=0$
This equation has two roots: $x 1=6.18 \times 10^{-8} \mathrm{M}$ and $\mathrm{x} 2=-1.61 * 10^{-7} \mathrm{M}$.
x 2 does not make sense, as it is less than zero.
Thus, $x=6.18 * 10^{-8} \mathrm{M}$.
$\left[\mathrm{H}+\mathrm{]}=1.0 * 10^{-7}+6.18 * 10^{-8}=1.62 * 10^{-7} \mathrm{M}\right.$.
$\mathrm{pH}=-\log [\mathrm{H}+]=6.79$
$\mathrm{pOH}=14-\mathrm{pH}=7.21$

Alternative solution

To compute pH of acidic solution, you could also use pH solver
http://www.webqc.org/phsolver.php with the following input lines:
HCl pKa=-10 $\mathrm{c}=1 \mathrm{e}-8$
which gives 6.98 for $10^{-8} \mathrm{M} \mathrm{HCl}$ and $\mathrm{HCl} p \mathrm{Ka}=-10 \mathrm{c}=1 \mathrm{e}-7$
which gives 6.79 for $10^{-7} \mathrm{M} \mathrm{HCl}$.

