Answer on Question \#50112, Chemistry, Physical Chemistry

Two vanderwaals gases A and B are at corresponding state. The critical temperature and pressure of gases are
Pc/atm. Tc/K
A. 48.150
B. 33. 12.

Find the volume of B at this corresponding state if the volume of A is 1.5 L .

Solution:

Van der Waals equation uses the following state variables: the pressure of the gas \mathbf{p}, total volume of the gas \mathbf{V}, number of moles \mathbf{n}, and absolute temperature of the system \mathbf{T}.

$$
\begin{gathered}
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \\
a=\frac{27 \times T_{c}^{2} \times R^{2}}{64 \times p_{c}} \\
b=\frac{T_{c} \times R}{8 \times p_{c}} \times R \times T_{c} \\
V_{c}=3 \times b=\frac{p_{c}+3 \times R}{3 \times p_{c}}
\end{gathered}
$$

The gas constant (also known as the molar, universal, or ideal gas constant, denoted by the symbol R or R) is a physical constant which is featured in many fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation.
$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=\underline{0.082 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}}$
Different gases have the same equation of state if each gas is described by the dimensionless reduced variables:

$$
\begin{aligned}
T_{r} & =\frac{T}{T_{c}} \\
p_{r} & =\frac{p}{p_{c}} \\
V_{r} & =\frac{V}{V_{c}}
\end{aligned}
$$

If two gases have the same values of $\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}$, and V_{r}, they are in corresponding states. The values of P, V, and T can be very different for two gases that are in corresponding states.
Gas A:

$$
V_{c}=\frac{48+3 \times 0.082 \times 150}{3 \times 48}=\frac{84.9}{144}=0.5896 L
$$

Gas B:

$$
V_{c}=\frac{33+3 \times 0.082 \times 12}{3 \times 33}=\frac{35.952}{99}=0.3632 \mathrm{~L}
$$

Gas	$\mathbf{p}_{\mathbf{c}}$, atm	$\mathbf{T}_{\mathbf{c}}, \mathbf{K}$	$\mathbf{V}_{\mathbf{c}}, \mathbf{L}$
A	48	150	0.5896
B	33	12	0.3632

$$
\begin{gathered}
V_{r_{A}}=V_{r B} \\
\frac{V_{\mathrm{A}}}{\mathrm{~V}_{\mathrm{cA}}}=\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{~V}_{\mathrm{cB}}} \\
\mathrm{~V}_{\mathrm{B}}=\frac{V_{A} \times V_{c B}}{V_{c A}}=\frac{1.5 \times 0.3632}{0.5896}=0.924 \mathrm{~L}
\end{gathered}
$$

Answer:
volume of B at this corresponding state is 0.924 L
http://www.AssignmentExpert.com/

