Solution:

$\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{CH}_{3} \mathrm{COO}^{-}$

$$
=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

Lets $\left[\mathrm{H}^{+}\right]=\mathrm{x}$, then $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\mathrm{C}_{0}-\mathrm{x}$
[$\left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=x+y$, y is part of anions from salt.

$$
\begin{gathered}
=\frac{x \times(x+y)}{c_{0}-x} \\
x^{2}+(K+y) \times x-\times c_{0}=0 \\
n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=c \times V=0.05 \times 0.03=0.0015 \mathrm{~mol} \\
n(\mathrm{CH} \mathrm{COOH})=c \times V=0.1 \times 0.1=0.01 \mathrm{~mol}
\end{gathered}
$$

Acid reacts with base, 2×0.0015 moles spends:

$$
\begin{gathered}
c_{0}=\frac{0.01-2 \times 0.0015}{0.1+0.03}=\frac{0.007}{0.13}=0.053846 \mathrm{M} \\
y=\frac{2 \times 0.0015}{0.1+0.03}=\frac{0.003}{0.13}=0.023077 \mathrm{M}
\end{gathered}
$$

So,

$$
\begin{gathered}
x^{2}+(0.000018+0.023077) \times x-0.000018 \times 0.053846=0 \\
x^{2}+0.023095 \times x-0.000000969228=0 \\
D=0.023095^{2}-4 \times 1 \times 0.000000969228=0.000537255937 \\
x=\frac{-0.023095+\sqrt{0.000537255937}}{2 \times 1}=0.00004189
\end{gathered}
$$

$\left[\mathrm{H}^{+}\right]=0.00004189 \mathrm{M}$

$$
p H=-\log _{10}\left[H^{+}\right]=-\log _{10} 0.00004189=4.38
$$

Answer:

$\mathrm{pH}=4.38$

