Answer on Question \#49920 - Chemistry - Other
The calcium in a $300.0-\mathrm{mL}$ sample of natural water was determined by precipitating the cation as $\mathrm{CaC}_{2} \mathrm{O}_{4}$. The precipitate was filtered, washed, and ignited in a crucible with an empty mass of 26.80 g. The mass of the crucible plus $\mathrm{CaO}(56 \mathrm{~g} / \mathrm{mol})$ was 26.90 g . Calculate the concentration of Ca in water in units of gram $/ 100 \mathrm{~mL}$ of the water.

Solution:

$\mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\mathrm{CaC}_{2} \mathrm{O}_{4}$
$\mathrm{CaC}_{2} \mathrm{O}_{4}=\mathrm{CaO}+\mathrm{CO}_{2}+\mathrm{CO}$

$$
\begin{gathered}
v\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)=v(\mathrm{CaO})=v\left(\mathrm{Ca}^{2+}\right) \\
v(\mathrm{CaO})=\frac{m-m_{0}}{M_{r}}=\frac{26.90-26.80}{56.08}=0.0018 \mathrm{~mol} \\
m\left(\mathrm{Ca}^{2+}\right)=0.0018 \mathrm{~mol} \times 40.078 \mathrm{~g} / \mathrm{mol}=0.073 \mathrm{~g} \\
c\left(\mathrm{Ca}^{2+}\right)=\frac{\mathrm{m}}{V\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{0.073 \mathrm{~g}}{300 \mathrm{ml}} \times 100=0.024 \mathrm{~g} / 100 \mathrm{ml}
\end{gathered}
$$

Answer: $0.024 \mathrm{~g} / 100 \mathrm{~mL}$ of the water.

