Answer on Question \#49742 - Chemistry - Other

Question

If 28.7 mL of 0.205 M KOH is required to completely neutralize 20.0 mL of a HC 2 H 3 O 2 solution, what is the molarity of the acetic acid solution?
$\mathrm{HC} 2 \mathrm{H} 3 \mathrm{O} 2(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KC} 2 \mathrm{H} 3 \mathrm{O} 2(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})$

Answer:

According to the reaction, 1 mole of acetic acid reacts with 1 mole of KOH , therefore, if $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is completely neutralized, there are no moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in solution, so number of moles of KOH required to completely neutralize acetic acid is equal to initial number of moles of the acid:

$$
n(\mathrm{KOH})=\mathrm{n}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)
$$

Number of moles of substance in solution equals:

$$
\begin{gathered}
n=C V \\
\mathrm{C}(\mathrm{KOH}) \cdot \mathrm{V}(\mathrm{KOH})=\mathrm{C}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) \cdot \mathrm{V}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)
\end{gathered}
$$

Molar concentration or molarity of acetic acid solution equals:

$$
\mathrm{C}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=\mathrm{C}(\mathrm{KOH}) \cdot \mathrm{V}(\mathrm{KOH}) / \mathrm{V}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=0.205 \cdot 28.7 / 20.0=0.294 \mathrm{M}
$$

Answer: 0.294 M

