Answer on Question \#49699 - Chemistry - Physical Chemistry

Question:

Oxides of a metal containing 22.53% and 50.45% oxygen, and in the first valence metal oxide is II, and the second - VII. Based on calculations of equivalent weight metal oxides, name the metal.

Answer:

The empirical formula for the first oxide is MeO and the second oxide is $\mathrm{Me}_{2} \mathrm{O}_{7}$.
Mass percent of oxygen (\mathbf{O}) $=22.53 \%$
Mass percent of metal in oxide is $(\mathrm{Me})=100-22.53=77.47 \%$
Number of moles of oxygen present in the oxide is
$22.53 / 16.0=1.41 \mathrm{~mol}$
Ratio of $\mathbf{M e}$ to \mathbf{O} in the oxide is

$$
X: 1.41=1: 1
$$

So, number atomic weight of Me present in the oxide is

$$
77.74 / M=1.41
$$

and $\mathrm{M}=77.74 / 1.41 \approx 55.13 \mathrm{~g} / \mathrm{mol}$.
It means that the unknown metal is iron (Fe).
The same is for the second metal oxide.
The empirical formula for the second oxide is $\mathrm{Me}_{2} \mathrm{O}_{7}$.
Mass percent of oxygen (\mathbf{O}) $=50.45 \%$
Mass percent of metal in oxide is $(\mathrm{Me})=100-50.45=49.55 \%$
Number of moles of oxygen present in the oxide is
$50.45 / 16.0=3.15 \mathrm{~mol}$
Ratio of $\mathbf{M e}$ to \mathbf{O} in the oxide is

$$
x: 3.15=2: 7
$$

then $X=2 * 3.15 / 7=0.9$
So, number atomic weight of Me present in the oxide is

$$
49.55 / M=0.9
$$

and $\mathrm{M}=49.55 / 0.9 \approx 55.05 \mathrm{~g} / \mathrm{mol}$.
It once more confirms that the unknown metal is iron (Fe).
Answer: unknown metal is iron (Fe).

