Answer on Question \#49672, Chemistry, Other

Task:

Suppose that the molar concentrations for CO and H_{2} at equilibrium are [CO] $=0.05 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right.$] $=0.06 \mathrm{M}$.
Use the formula you found in Part B to calculate the concentration of $\mathrm{CH}_{3} \mathrm{OH}$.
Formula from part B: $\mathrm{K}_{\mathrm{c}}[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}$

Answer:

$\mathrm{CO}+2 \mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{Kc}=\left[\mathrm{CH}_{3} \mathrm{OH}\right] /[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}$
$\left[\mathrm{CH}_{3} \mathrm{OH}\right]=\mathrm{Kc} \mathrm{X}[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}$
The equilibrium constant for the given recation is $\mathrm{Kc}=2.3^{*} 104$.
$\left[\mathrm{CH}_{3} \mathrm{OH}\right]=2.3^{*} 104 \times 0,05 \times 0,062=4,14 \mathrm{M}$

