Task:

1. Calculate the no. Of grams of water that must be added to 16 grams of sugar in the preparation of $\mathbf{2 5 \%}$ sugar solution
2. Calculate the grams of solute that must be dissolve in
a. 350 g of water in the preparation of 15% potassium sulfate solution
b. 15 g of water in the preparation of 10% sodium chloride solution

Answer:

1)

$$
\begin{aligned}
& \%=\frac{m_{(\text {sugar })}}{m_{(\text {sugar })}+m\left(\mathrm{H}_{2} \mathrm{O}\right)} \cdot 100 \% \\
& 25 \%=\frac{16}{16+m\left(\mathrm{H}_{2} \mathrm{O}\right)} \cdot 100 \% \\
& m\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{16 \cdot 100}{25}-16=48 \mathrm{~g}
\end{aligned}
$$

2)a

$$
\%=\frac{m_{\left(K_{2} S O_{4}\right)}}{m_{\left(K_{2} S O_{4}\right)}+m_{\left(H_{2} \mathrm{O}\right)}} \cdot 100 \%
$$

$$
15 \%=\frac{m_{\left(K_{2} S o_{4}\right)}}{m_{\left(K_{2} S o_{4}\right)}+350} \cdot 100 \%
$$

$$
m_{\left(K_{2} S O_{4}\right)}=0,15\left(m_{\left(K_{2} S O_{4}\right)}+350\right)
$$

$$
m_{\left(K_{2} 5 o_{4}\right)}=61,8 \mathrm{~g}
$$

b)

$$
\begin{aligned}
& \%=\frac{m_{(\mathrm{NaCl})}}{m_{(\mathrm{NaCl})}+m_{\left(\mathrm{H}_{2} \mathrm{O}\right)}} \cdot 100 \% \\
& 10 \%=\frac{m_{(\mathrm{NaCl})}}{m_{(\mathrm{NaCl})}+15} \cdot 100 \% \\
& m_{(\mathrm{NaCl})}=0,1\left(m_{(\mathrm{NaCl})}+15\right) \\
& m_{(\mathrm{NaCl})}=1,67 \mathrm{~g}
\end{aligned}
$$

