## Answer on Question \#49592-Chemistry - Other

## Question

When heated at 405 C at 0.850 atm, ammonium nitrate decomposes to produce nitrogen, water and oxygen gases. using the ideal gas law equation, calculate the volume in milliliters, of water vapor produced when 85.0 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes?

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})--->2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

## Answer:

Number of moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is:

$$
\frac{m}{M} \quad \frac{85.0}{80} \quad 1.06 \text { moles }
$$

According to the reaction, 2 moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ produce 4 moles of $\mathrm{H}_{2} \mathrm{O}$, therefore, 1.06 moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ produce 2.12 moles of $\mathrm{H}_{2} \mathrm{O}$.

Ideal gas law equation is:

$$
P V \quad R T
$$

Then the volume of water vapor produced when 85.0 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes is:

$$
V \quad \frac{R T}{P} \quad \frac{2.12 \cdot 0.082 \cdot(405+273)}{0.850} \quad 138.663 L \quad 138663 \mathrm{~mL}
$$

Answer: 138663 mL

