Answer on Question \#49310 - Chemistry - Inorganic Chemistry

Question

A student collected 1 g of Hydrogen, oxigen, chlorine, \&Amonia in seperate bottle. Arrange these samples in the decreasing order of number of molecules In them? Justify?

Answer:
Calculate the number of molecules in 1 g of each gas. The formula is:

$$
N=\frac{m \cdot N_{A}}{M}
$$

m - the mass of the gas, $\mathrm{m}=1 \mathrm{~g}$;
N_{A} - Avogadro constant, $\mathrm{N}_{\mathrm{A}}=6.022 \cdot 10^{23}$;
M - molar mass of the gas.
Number of molecules in 1 g of hydrogen is:

$$
N\left(H_{2}\right)=\frac{1 \cdot 6.022 \cdot 10^{23}}{2}=3.011 \cdot 10^{23} \text { molecules }
$$

Number of molecules in 1 g of oxygen is:

$$
N\left(O_{2}\right)=\frac{1 \cdot 6.022 \cdot 10^{23}}{32}=1.88 \cdot 10^{22} \text { molecules }
$$

Number of molecules in 1 g of chlorine is:

$$
N\left(C l_{2}\right)=\frac{1 \cdot 6.022 \cdot 10^{23}}{71}=8.488 \cdot 10^{21} \text { molecules }
$$

Number of molecules in 1 g of ammonia is:

$$
N\left(N H_{3}\right)=\frac{1 \cdot 6.022 \cdot 10^{23}}{17}=3.54 \cdot 10^{22} \text { molecules }
$$

Therefore, number of molecules in 1 g of the gas decreases in a row:

$$
\begin{aligned}
\mathrm{H}_{2} & >\mathrm{NH}_{3}>\mathrm{O}_{2}>\mathrm{Cl}_{2} \\
\mathrm{~N}\left(\mathrm{H}_{2}\right)>\mathrm{N}\left(\mathrm{NH}_{3}\right) & >\mathrm{N}\left(\mathrm{O}_{2}\right)>\mathrm{N}\left(\mathrm{Cl}_{2}\right)
\end{aligned}
$$

So, the smaller and the lighter the molecule of the gas is, the more molecules of it there are in 1 g of this gas.

