Question \#49219, Chemistry, Physical Chemistry

How can I calculate the amount of moles of water that is formed given a theoretical value of $55.90 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$ that is formed and from using the amount of joules of heat that is liberated

Answer:

In order to calculate the heat of neutralization, which is equal to $55.9 \mathrm{~kJ} / \mathrm{mol}$, you need to spend a special experiment.

1. It should get the calorimeter and measure the constant of the calorimeter (k)
2. Pour calorimeter certain amount of acid (e.g. HCl 0.1 M 110 ml)
3. Measure the initial temperature of the calorimeter with acid T1
4. Then pour into the calorimeter alkaline solution (e.g. 0.1 M NaOH 100 ml)
5. Measure the temperature in the calorimeter after mixing T2
6. $q_{\text {rxn }}=\left(m_{H C(I s o l)} \cdot \mathrm{c}+\mathrm{k}\right) \cdot \Delta t$
$\Delta t=T 2-T 1$
7. $\Delta \mathrm{H}_{\mathrm{n}}=\left(-\mathrm{q}_{\mathrm{rxn}}\right) /\left(\mathrm{V}_{\mathrm{NaOH}} \cdot \mathrm{C}_{\mathrm{NaOH}}\right)=-55.9 \mathrm{~kJ} / \mathrm{mol}$
(Take into account the density of the solutions at these concentrations like the density of water)
