Answer on Question \#48966 - Chemistry - Inorganic Chemistry

Question

10 g of sample of mixture of CaCl_{2} and NaCl is treated to precipitate all calcium as CaCO_{3}. This CaCO_{3} is heated to convert all Ca to CaO and final mass of CaO is 1.62 g . The percent by mass of CaCl_{2} in original mixture is

Answer:

The scheme of this converting is:

$$
\mathrm{CaCl}_{2} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}
$$

We see that 1 mole of CaCl_{2} forms 1 mole of CaCO_{3}, then 1 mole of CaCO_{3} forms 1 mole of CaO .

Number of moles of CaO is:

$$
n(C a O)=\frac{m(C a O)}{M(C a O)}=\frac{1.62}{40.1}=0.029 \mathrm{~mol}
$$

Therefore, number of moles of CaCl_{2} in original mixture was 0.029 moles too. Then the mass of CaCl_{2} in original mixture is:

$$
m\left(\mathrm{CaCl}_{2}\right)=n\left(\mathrm{CaCl}_{2}\right) M\left(\mathrm{CaCl}_{2}\right)=0.029 \cdot 111.1=3.22 \mathrm{~g}
$$

The percent by mass of CaCl_{2} in original mixture is:

$$
\omega\left(\mathrm{CaCl}_{2}\right)=\frac{m\left(\mathrm{CaCl}_{2}\right)}{m(\text { mixture })} \cdot 100 \%=\frac{3.22}{10} \cdot 100 \%=32.2 \%
$$

Answer: 32.2 \%

