Answer on Question #48949 – Chemistry – Inorganic Chemistry

Question:

Calculate the frequency of the radiation required to eject photoelectrons to a velocity of 9 $\times 10^5$ MS⁻¹ from sodium metal surface, having a threshold frequency of 4.61 $\times 10^{14}$ Hz (mass of photoelectron = 9.109 $\times 10^{-31}$ kg)

Solution:

According to Enstein's equation energy of photon (irradiation energy) is given by

 $hv = m \times v^2/2 + A$, where v –the irradiation frequency, v – the velocity of photo electrons, A – the work function and $h = 6.62606957 \times 10^{-34} \, J \, s$.

The work function can be calculated using the threshold frequency (v_0) when V = 0:

 $A = hv_0$

Thus, $v = (m \times v^2/2 + hv_0)/h$

 $v = (9.109 \times 10^{-31} \text{ kg} \times 40.5 \times 10^{10} \text{ m}^2/\text{s}^2)/(6.62606957 \times 10^{-34} \text{ J s}) + 4.61 \times 10^{14} \text{ Hz} = 0.000 \times 10^{-31} \text{ kg} \times 40.5 \times 10^{10} \text{ m}^2/\text{s}^2)$

 $= 5.56762 \times 10^{14} \text{ Hz} + 4.61 \times 10^{14} \text{ Hz} = 10.17762 \text{ Hz}$

Answer: 10.17762 Hz