Answer on Question \#48946 - Chemistry - Inorganic Chemistry

Question:

Calculate the magnetic moment in 1113 units for a paramagnetic substance having three unpaired electrons.

Answer:

The effective magnetic moment caused by spin values for paramagnetic compound is defined:
$\mu=\mathrm{g} \times[\mathrm{S}(\mathrm{S}+1)]^{1 / 2}$, where $\mathrm{S}-$ a total spin for the unit, $\mathrm{g}-$ the constant being of 2.0023

The total spin equals:
$S=n \times 1 / 2=3 \times 1 / 2=3 / 2$, where $n-$ the number of unpaired electrons.

Thus, for 1 unit, $\mu=2.0023 \times[3 / 2(3 / 2+1)]^{1 / 2}=3.87 \mu_{B}$, where $\mu_{B}=9.274 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$

The total magnetic moment can be found from the equation:
$M=m \times \mu$, where $m-$ the number of units.

So, $\mathrm{M}=1113 \times 3.87 \mu_{\mathrm{B}}=4307.31 \mu_{\mathrm{B}}=39946 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1} \approx 4 \times 10^{-20} \mathrm{~J} \mathrm{~T}^{-1}$

