Answer on the question \#48847, Chemistry, Physical Chemistry

Question:

the rate of disappearing of H 2 in Habers process is 6 mol lit- 1 sec- 1 , what is the rate of disappearing of N 2 , appearing of NH 3 and rate of reaction

Solution:

Let's write the reaction equation first:

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2}=2 \mathrm{NH}_{3}
$$

Then, the rate of the reaction is:

$$
\begin{gathered}
r=-\frac{d c\left(H_{2}\right)}{3 d t}=-\frac{d c\left(N_{2}\right)}{d t}=\frac{d c\left(\mathrm{NH}_{3}\right)}{2 d t} . \\
\frac{d c\left(H_{2}\right)}{d t}=-6 \frac{\mathrm{~mol}}{\mathrm{Ls}}, \\
\text { hence: } \frac{d c\left(N_{2}\right)}{d t}=-2 \frac{\mathrm{~mol}}{\mathrm{Ls}}, \frac{d c\left(\mathrm{NH}_{3}\right)}{d t}=4 \frac{\mathrm{~mol}}{\mathrm{Ls}} \\
\text { reaction rate: } r=2 \frac{\mathrm{~mol}}{\mathrm{Ls}}
\end{gathered}
$$

Answer: the rate of disappearing of $\mathrm{N}_{2}=2 \frac{\mathrm{~mol}}{\mathrm{Ls}}$, appearing of $\mathrm{NH}_{3}=4 \frac{\mathrm{~mol}}{\mathrm{Ls}}$, rate of reaction $=2 \frac{\mathrm{~mol}}{\mathrm{Ls}}$.

