Answer on Question \#48814-Chemistry - Inorganic Chemistry

Question:

The iodine bromide molecule (IBr) has a bond length of $2.49 \mathrm{~A}^{\circ}$ and a dipole moment of 1.21 D . Calculate the effective charges on the I and Br atoms in IBr in units of electronic charge, e. (1D = $3.34 \times 10-3^{\circ} \mathrm{C} \mathrm{m}$, electronic charge, $\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$)

Solution:

The dipole moment is given by $\mu=\mathrm{qr}$, where q is the charge separated (in C) and r is the distance separating the charge. Since we're given the dipole moment (1.21 D) and the bond length (2.49 Angstrom), we solve for the charge q. Dipole moments are given in D units - recall that $1 \mathrm{D}=3.34 \times$ $10^{-30} \mathrm{C} \mathrm{m}$. Convert the bond length into meters:
$r=$ 2.49 Angstrom $\left(\frac{1 \times 10^{-10} \mathrm{~m}}{1 \text { Angstrom }}\right)$
$r=2.49 \times 10^{-10} \mathrm{~m}$
Solve the definition of the dipole moment for the charge
$\mathrm{q}=\frac{\mu}{r}$
$\mathrm{q}=1.623 \times 10^{-20} \mathrm{C}$
So, the amount of charge separated by the difference in EN is 1.623×10^{-20} Coulombs. If you need the answer in units of electronic charge e:
$\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$
$q=1.623 \times 10^{-20} C\left(\frac{1 \times e}{1.60 \times 10^{-19} C}\right)$
$q=0.101 e$

Answer: $\mathbf{B r}$ has a charge of $\mathbf{- 0 . 1 0 1}$ and I has a charge of $\boldsymbol{+ 0 . 1 0 1}$.

