Question \#48734, Chemistry, Other

At equilibrium for the reaction $\mathrm{H} 2(\mathrm{~g})+\mathrm{Br} 2(\mathrm{~g})$ is revesible arrow $2 \mathrm{HBr}(\mathrm{g})$ in a 10 litre vessel was found to contain 2.5×10 to the power -3 mole of $\mathrm{H} 2,0.150$ mole of HBr and 2.8×10 to the power-3 mole of BR2. What is the value of k at this temperature?

Answer:

$$
\mathrm{H}_{2}+\mathrm{Br}_{2}=2 \mathrm{HBr}
$$

$\mathrm{V}=10 \mathrm{~L}$
$n\left(\mathrm{H}_{2}\right)=2.5 \cdot 10-2 \mathrm{~mol}$
$\mathrm{n}(\mathrm{HBr})=0.150 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{Br}_{2}\right)=2.8 \cdot 10-2 \mathrm{~mol}$

Because the equilibrium constant is the ratio and the reaction takes place in a constant volume, the concentration can be used instead of the number of particles in order to find the constants:

$$
\mathrm{K}=\frac{\mathrm{HBr}]^{2}}{\left.{ }_{2}\right]\left[B r_{2}\right]}=0.15^{2} /\left(2.5 \cdot 10^{-2} \cdot 2.8 \cdot 10^{-2}\right)=32.14
$$

