Answer on Question \#48733 - Chemistry - Inorganic Chemistry

Question

Copper(II) carbonate is heated in a test tube. Gas produced is passed in lime water through a delivery tube. 6.2 g of copper(ii) carbonate is used in the reaction. Calculate the volume of carbon dioxide gas produced at room condition.

Answer:

Heating of copper(II) carbonate:

$$
\mathrm{CuCO}_{3(\mathrm{~s})}=\mathrm{CuO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

CO_{2} is a produced gas.
Number of moles of copper(II) carbonate equals:

$$
n\left(\mathrm{CuCO}_{3}\right)=\frac{m\left(\mathrm{CuCO}_{3}\right)}{M\left(\mathrm{CuCO}_{3}\right)}=\frac{6.2}{123.55}=0.05 \mathrm{moles}
$$

According to the reaction equation, number of moles of CO_{2} produced is equal to that of copper(II) carbonate:

$$
\mathrm{n}\left(\mathrm{CO}_{2}\right)=\mathrm{n}\left(\mathrm{CuCO}_{3}\right)=0.05 \text { moles }
$$

Then the volume of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is:

$$
V\left(\mathrm{CO}_{2}\right)=n\left(\mathrm{CO}_{2}\right) \cdot V_{m}=0.05 \cdot 22.4=1.12 L
$$

Answer: 1.12 L of CO_{2}

