Answer on Question\#48681 - Chemistry - Physical Chemistry

how many gram of dibasic acid of molar weight 200 should be present in 100 ml of aqueous solution to give strength of 0.1 N

Answer

A dibasic acid has two hydrogen atoms to donate to the base.
The normality of the solution is calculated using the formula:
$N=\frac{C}{f_{e q}}$,
where C is the molar concentration ($\mathrm{mol} / \mathrm{I}$), and $f_{e q}$ is the equivalence factor.
Molar concentration is calculated using the formula:
$C=\frac{n}{V}=\frac{m}{M \cdot V^{\prime}}$
where n is the amount of constituent (in moles), m is the mass of constituent (in grams), V is the volume of the solution (in liters).
Given all these,
$N=\frac{C}{f_{e q}}=\frac{m}{f_{e q} \cdot M \cdot V}$, then $m=N \cdot f_{e q} \cdot M \cdot V$
For dibasic acid, equivalence factor is $f_{e q}=1 / 2=0.5$

$$
\begin{gathered}
M=200 \mathrm{~g} / \mathrm{mol} \\
V=100 \mathrm{ml}=0.1 \mathrm{l} \\
m=N \cdot f_{e q} \cdot M \cdot V=0.1 \cdot 0.5 \cdot 200 \cdot 0.1=1 g
\end{gathered}
$$

The answer is 1 gram.

