Question:

For the $[Cr(H_2O)_6]^{2+}$ and $[Cr(CN)_6]^{4-}$ ion has energy diffrence value(del zero) are 17830 cm⁻¹ and 26280 cm⁻¹. The pairing energy is 23520 cm⁻¹. State which complex is high spin or spin. And calculate magnetic moment of each.

Answer:

The energy of the ion in cyanide complex is lower (26280 cm⁻¹) than the pairing energy, so it is low-spin complex. Hydro complex is a high-spin, as chromium ion has enough energy to make its electrons unpaired.

The diagram for $[Cr(H_2O)_6]^{2\scriptscriptstyle +}$ and $[Cr(CN)_6]^{4\scriptscriptstyle -}$ relatively:

The magnetic moment is defined as:

 $\mu = \sqrt{n(n+1)}(B.M.)$, where n is the number of unpaired electrons, B.M. is Bohr magneton.

For [Cr(H₂O)₆]²⁺:

$$\mu = \sqrt{4(4+1)}(B.M.) = \sqrt{20}(B.M.)$$

For [Cr(CN)₆]⁴⁻:

 $\mu = \sqrt{2(2+1)}(B.M.) = \sqrt{6}(B.M.)$