Question \#47947 - Chemistry - Organic Chemistry

Question:

5.00 g of a hydrated salt of barium when heated to a constant mass of 2.08 . Calculate the number of molecules of water of crystallization in the hydrated salt.

Answer:

The difference in the mass of the initial and heated samples is the mass of water lost:
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=5-2.08=2.92 g$

The amount of moles of water:
$v\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{M\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{2.92 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=0.162 \mathrm{moles}$

If the salt is BaCl_{2}, the amount of the moles of the salt is:
$v\left(\mathrm{BaCl}_{2}\right)=\frac{m\left(\mathrm{BaCl}_{2}\right)}{M\left(\mathrm{BaCl}_{2}\right)}=\frac{2.08 \mathrm{~g}}{208 \mathrm{~g} / \mathrm{mol}}=0.01$ moles

The amount of moles of water and BaCl_{2} relate as:
$\frac{v\left(\mathrm{BaCl}_{2}\right)}{v\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{0.01}{0.162} \approx \frac{1}{16}$

The amount of water molecules is $16, \mathrm{BaCl}_{2} \cdot 16 \mathrm{H}_{2} \mathrm{O}$.

