Question \#47871 - Chemistry - Other

Question:

Why does the titration of 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ require a larger titrant than the titration of 50 mL of 0.1 M HCl ? Assume that the titrant being used is 0.1 M NaOH .

Answer:

The titration of HCl is described with the equation:
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
The amount of moles of 0.1 M HCl in 50 ml is:
$v(\mathrm{HCl})=C(\mathrm{HCl}) \times V(\mathrm{HCl})=0.1 \mathrm{M} \times \frac{50 \mathrm{ml}}{1000}=5 \cdot 10^{-3} \mathrm{moles}$
The amount of moles of NaOH required to neutralize $5 \cdot 10^{-3}$ moles of HCl according to the equation above is the same:
$v_{1}(\mathrm{NaOH})=v(\mathrm{HCl})=5 \cdot 10^{-3}$ moles
The volume of 0.1 M NaOH required for the titration is
$V_{1}(N a O H)=\frac{v_{1}(N a O H)}{C(N a O H)}=\frac{5 \cdot 10^{-3} \mathrm{moles}}{0.1 \mathrm{M}}=5 \cdot 10^{-2} \mathrm{~L}=50 \mathrm{ml}$
The equation reaction for $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
The amount of moles of $0.1 \mathrm{H}_{2} \mathrm{SO}_{4}$ in 50 ml of its solution is
$v\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=C\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \times V\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.1 \mathrm{M} \times \frac{50 \mathrm{ml}}{1000}=5 \cdot 10^{-3} \mathrm{moles}$
According the above equation, two moles of NaOH are required to neutralize one mole of NaOH . Than the amount of NaOH that is required to neutralize $5 \cdot 10^{-3}$ moles is
$v_{2}(\mathrm{NaOH})=2 \times v\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=2 \times 5 \cdot 10^{-3}$ moles $=10 \cdot 10^{-3}$ moles
The volume of 0.1 M NaOH that contains $10 \cdot 10^{-3}$ moles is
$V_{2}(N a O H)=\frac{v_{2}(N a O H)}{C(N a O H)}=\frac{10 \cdot 10^{-3} \text { moles }}{0.1 \mathrm{M}}=10 \cdot 10^{-2} \mathrm{~L}=100 \mathrm{ml}$

