Answer on Question \#47826, Chemistry, Other

Task:

What is the maximum mass of S_{8} that can be produced by combining 75.0 g of each reactant?

Answer:

$8 \mathrm{SO}_{2}+16 \mathrm{H}_{2} \mathrm{~S}=3 \mathrm{~S}_{8}+16 \mathrm{H}_{2} \mathrm{O}$
$v=\frac{m}{M}$
where m-mass, grams;
M-molar mass,gram/mol.
$\mathrm{M}\left(\mathrm{SO}_{2}\right)=64.1 \mathrm{~g} / \mathrm{mol} \quad \mathrm{M}\left(\mathrm{H}_{2} \mathrm{~S}\right)=34.1 \mathrm{~g} / \mathrm{mol}$
$v\left(\mathrm{SO}_{2}\right)=\frac{75.0}{64.1}=1.17 \mathrm{moles}$
$v\left(\mathrm{H}_{2} \mathrm{~S}\right)=\frac{75.0}{34.1}=2.2$ moles
Let's calculate the amount of S_{8}, that can be produced from 75.0 grams of each reactant:
$v\left(\mathrm{~S}_{8}\right)=\frac{v\left(\mathrm{SO}_{2}\right)}{8} \cdot 3=\frac{1.17}{8} \cdot 3=0.44$ moles
$v\left(\mathrm{~S}_{8}\right)=\frac{v\left(\mathrm{H}_{2} \mathrm{~S}\right)}{16} \cdot 3=\frac{2.2}{16} \cdot 3=0.41$ moles
As we can see from the previous calculations, the amount of $\mathrm{H}_{2} \mathrm{~S}$ is the determining factor.
There will be an excess amount of SO_{2}. That is why:
$m\left(S_{8}\right)=v\left(S_{8}\right) \cdot M\left(S_{8}\right)$
$\mathrm{M}\left(\mathrm{S}_{8}\right)=256.5 \mathrm{~g} / \mathrm{mol}$
That is why the maximum mass of S_{8}, that can be produced is equal to:
$m\left(\mathrm{~S}_{8}\right)=0.41 \cdot 256.5=105 \mathrm{~g}$

