## Question \#47454, Chemistry, Inorganic Chemistry

The next three (3) problems deal with the titration of 421 mL of 0.501 M carbonic acid (H2CO3) (Ka1 $=4.3 \times 10-7, \mathrm{Ka} 2=5.6 \times 10-11$ ) with 2.1 M NaOH .

1. What is the pH of the solution at the 2 nd equivalence point?
2. What will the pH of the solution be when 0.1316 L of 2.1 M NaOH are added to the 421 mL of 0.501 M carbonic acid?
3. How many mL of the 2.1 M NaOH are needed to raise the pH of the carbonic acid solution to a pH of 6.019?

## ANSWER:

1) pH at the $2^{\text {nd }}$ equal. point
$\left.\left[\mathrm{H}^{+}\right]=K w * K a 2 * 2 / C\right)=\operatorname{sqrt}\left(\left(10^{\wedge}(-14)^{\left.\left.* 5.6 * 10^{\wedge}(-11)^{*} 2\right) / 0.501\right)=1.495^{*} 10^{\wedge}(-12), ~(1)}\right.\right.$
$\mathrm{pH}=-\lg [\mathrm{H}+]=-\lg \left(1.495^{*} 10^{\wedge}(-12)\right)=\mathbf{1 1 . 8 2}$
2) If we added 0.1316 L 2.1 M NaOH to the 421 mL 0.501 M carbonic acid
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K w * K a 1 * \frac{V 1+V 2}{C * V 1}\right)=$
$=\operatorname{sqrt}\left(\left(1^{*} 10^{\wedge}(-14)^{*} 4.3^{*} 10^{\wedge}(-7)^{*}(0.1316+0.421)\right) /\left(0.501^{*} 0.421\right)=1.06^{*} 10^{\wedge}(-10)\right.$
$\mathrm{pH}=-\lg (\mathrm{H}+)=-\lg \left(1.06^{*} 10^{\wedge}(-10)\right)=9.97$
