Answer to the Question \#47430 - Chemistry - Inorganic Chemistry

Question

$\mathrm{BaCl}_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4}---->\mathrm{NaCl}+\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
If 0.5 moles of BaCl_{2} is mixed with 0.2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is?

Answer:

Balanced reaction equation is:
$3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4}=6 \mathrm{NaCl}+\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Make a proportion:
3 moles of BaCl_{2} react with 2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
0.5 moles of $\mathrm{BaCl}_{2}-x$ moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$
$x=\frac{0.5 \cdot 2}{3}=0.33$ moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ should react with 0.5 moles of BaCl_{2}
We have only 0.2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, therefore it is the limiting reactant.
We need to make another proportion to calculate the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed by mixing 0.5 moles of BaCl_{2} with 0.2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$:

2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ produce 1 mole of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
0.2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}-x$ moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$x=\frac{0.2 \cdot 1}{2}=0.1$ moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ could be produced
Answer: 0.1 moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

