Answer to the Question #47430 - Chemistry – Inorganic Chemistry

Question

$$BaCl_2 + Na_3PO_4 ----> NaCl + Ba_3(PO_4)_2$$
.

If 0.5 moles of BaCl₂ is mixed with 0.2 moles of Na₃PO₄, the maximum number of moles of Ba₃(PO₄)₂ that can be formed is?

Answer:

Balanced reaction equation is:

$$3BaCl_2 + 2Na_3PO_4 = 6NaCl + Ba_3(PO_4)_2$$

Make a proportion:

3 moles of BaCl₂ react with 2 moles of Na₃PO₄

0.5 moles of BaCl₂ - x moles of Na₃PO₄

$$x = \frac{0.5 \cdot 2}{3} = 0.33$$
 moles of Na_3PO_4 should react with 0.5 moles of $BaCl_2$

We have only 0.2 moles of Na₃PO₄, therefore it is the limiting reactant.

We need to make another proportion to calculate the maximum number of moles of $Ba_3(PO_4)_2$ that can be formed by mixing 0.5 moles of $BaCl_2$ with 0.2 moles of Na_3PO_4 :

2 moles of Na₃PO₄ produce 1 mole of Ba₃(PO₄)₂

0.2 moles of Na₃PO₄ – x moles of Ba₃(PO₄)₂

$$x = \frac{0.2 \cdot 1}{2} = 0.1 \text{ moles of } Ba_3(PO_4)_2 \text{ could be produced}$$

Answer: $0.1 \text{ moles of } Ba_3(PO_4)_2$