Answer to the Question\#47310-Chemistry, Other

Question:

An average human adult takes about 15 breaths per min and exhales 23 ml of CO_{2} with each breath. If your are trapped in a cave with pressure 0.963 atm and $11^{\circ} \mathrm{C}$ and your only source of oxygen is a breathing device containing 1 kg of KO_{2}, how long do you have to live?

Solution:

KO_{2} (potassium superoxide) can be used for rebreathers (CO_{2}-scrubbers). The KO_{2}-rebreather units work by converting the exhaled CO_{2} to O_{2} via the following chemical reaction:

$$
4 \mathrm{KO}_{2}+2 \mathrm{CO}_{2}=2 \mathrm{~K}_{2} \mathrm{CO}_{3}+3 \mathrm{O}_{2}
$$

Notice the potassium superoxide consumes CO_{2}, a product of respiration, and produces O_{2}, which can be breathed.
To solve our problem, we can describe breathing by simplified chemical equation:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}=6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

1. Now calculate moles of CO_{2} exhales per 1 breath using the ideal gas equation:

$$
P V=n R T \text {, }
$$

Convert all values to standard form:

$$
\begin{gathered}
0.963 \mathrm{~atm}=(101325 \mathrm{~Pa} / \mathrm{atm}) \times 0.963 \mathrm{~atm}=97576 \mathrm{~Pa}, 23 \mathrm{ml}=2.3 \times 10^{-5} \mathrm{~m}^{3}, 11^{\circ} \mathrm{C}=284 \mathrm{~K}, \\
\mathrm{R}=8.314 \mathrm{~Pa} \times \mathrm{m}^{3} / \mathrm{mol} \times \mathrm{K}
\end{gathered}
$$

Per 1 breath: $n=P V / R T=97576 \times 2.3 \times 10^{-5} / 8.314 \times 284=9.5 \times 10^{-4} \mathrm{~mol}$
2. How many moles of O_{2} is needed to 1 breath?

According to simplified chemical equation of breathing 1 mole of O_{2} are equals to 1 mole of CO_{2}. Thus $9.5 \times 10^{-4} \mathrm{~mol}$ of O_{2} is needed to 1 breath.
3. How many moles of O_{2} can be obtained from $1 \mathrm{~kg}(1000 \mathrm{~g})$ of KO_{2} ?
KO_{2} reacts with CO_{2} according to the equation:

$$
4 \mathrm{KO}_{2}+2 \mathrm{CO}_{2}=2 \mathrm{~K}_{2} \mathrm{CO}_{3}+3 \mathrm{O}_{2}
$$

As we can see, 1 mole of O_{2} is equivalent to $4 / 3$ moles of KO_{2}

$$
\mathrm{M}\left(\mathrm{KO}_{2}\right)=39+16 \times 2=71 \mathrm{~g} / \mathrm{mol},
$$

$$
4 / 3 \text { moles of } \mathrm{KO}_{2}=71 \times 4 / 3=94.7 \mathrm{~g} / \mathrm{mol} \mathrm{O}_{2}
$$

$$
1000 \mathrm{~g} /\left(94.7 \mathrm{~g} / \mathrm{mol} \mathrm{O}_{2}\right)=10.6 \mathrm{~mol} \mathrm{O}_{2}
$$

4. How many breaths you can do with $10.6 \mathrm{~mol} \mathrm{O}_{2}$?

$$
10.6 \mathrm{~mol} / 9.5 \times 10^{-4} \mathrm{~mol}=11157 \text { breaths }
$$

5. How long it will be possible to breathe?

$$
11157 \text { breaths } /(15 \text { breaths } / \mathrm{min})=743 \mathrm{~min}
$$

Answer: You can to live about 743 minutes.

