Answer to the Question \#47302-Chemistry - Other

Question

A 878 mL aqueous solution contains 0.0314 mol of HCl . What is the pH ? Give your answer to 3 significant figures.

Answer:

Molar concentration of this solution is:

$$
C=\frac{n}{V}=\frac{0.0314}{0.878}=0.036 \mathrm{~mol} / L
$$

n - Number of moles of $\mathrm{HCl}, \mathrm{n}=0.0314 \mathrm{~mol}$.
V - Volume of the solution, $\mathrm{V}=878 \mathrm{~mL}=0.878 \mathrm{~L}$.
pH equals:

$$
\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]
$$

[H^{+}] - Molar concentration of H^{+}ions.
Hydrochloric acid is a strong acid and it fully dissociates in water:

$$
\mathrm{HCl}_{(\mathrm{aq})} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

We see that the concentration of H^{+}ions is equal to the concentration of HCl . Therefore H^{+}ion concentration is:

$$
\left[\mathrm{H}^{+}\right]=\mathrm{C}(\mathrm{HCl})=0.036 \mathrm{~mol} / \mathrm{L}
$$

So, pH value of 0.036 M HCl is:

$$
\mathrm{pH}=-\lg (0.036)=1.444
$$

Answer: $\mathrm{pH}=1.444$

