Question:

The chemical formula of petrol is $\mathrm{C}_{12} \mathrm{H}_{26}$. If we want to burn completely 1 liter in air, find out mass of oxygen, moles of oxygen, volume of oxygen, volume of air (hint: $\mathrm{O}_{2} 21 \%$ of air mixture). How much CO_{2} is produce by mass, volume. Suppose 1 liter=1000g.

Answer:

The equation of reaction:
$2 \mathrm{C}_{12} \mathrm{H}_{26}+37 \mathrm{O}_{2} \rightarrow 24 \mathrm{CO}_{2}+26 \mathrm{H}_{2} \mathrm{O}$
According to this equation, to burn 2 liters of hydrocarbon $\mathrm{C}_{12} \mathrm{H}_{26}$, 37 liters of oxygen O_{2} are required. If we have 1 liter of hydrocarbon $\mathrm{C}_{12} \mathrm{H}_{26}$, than $\mathrm{V}\left(\mathrm{O}_{2}\right)=\mathbf{3 7 / 2}=\mathbf{1 8 . 5}$ liters of oxygen O_{2} are necessary.

The amount of moles of O_{2} can be estimated:
$n\left(O_{2}\right)=\frac{V\left(O_{2}\right)}{V_{m}}$, where $\mathrm{V}_{\mathrm{m}}=22.4 \mathrm{~L} / \mathrm{mol}$ is the volume of one mole of gaseous compound at STP.

Therefore, the amount of moles of oxygen O_{2} :
$n\left(O_{2}\right)=\frac{V\left(O_{2}\right)}{V_{m}}=\frac{18.5 \mathrm{~L}}{22.4 L / \mathrm{mol}}=0.826 \mathrm{~mol}$

The mass of oxygen O_{2} is defined as:
$m\left(O_{2}\right)=n\left(O_{2}\right) \times M\left(O_{2}\right)=0.826 \mathrm{~mol} \times 31.999 \mathrm{~g} / \mathrm{mol}=26.4 \mathrm{~g}$, where $\mathrm{M}\left(\mathrm{O}_{2}\right)$ is the mass of one mole of oxygen O_{2}.

The volume of air required is greater than the volume of Oxygen:
$V($ air $)=\frac{100 \% \times V\left(O_{2}\right)}{21 \%}=\frac{100 \% \times 18.5 L}{21 \%}=88 L$
The volume of CO_{2} produced is twelve times greater than the volume of hydrocarbon $\mathrm{C}_{12} \mathrm{H}_{26}$ burnt, $\mathrm{V}\left(\mathrm{CO}_{2}\right)=$ $1 \mathrm{~L} \times 12$ = 12 L .

The mass of CO_{2} :
$m\left(\mathrm{CO}_{2}\right)=n\left(\mathrm{CO}_{2}\right) \times M\left(\mathrm{CO}_{2}\right)=\frac{V\left(\mathrm{CO}_{2}\right)}{V_{m}} \times M\left(\mathrm{CO}_{2}\right)=\frac{12 \mathrm{~L}}{22.4 \mathrm{~L} / \mathrm{mol}} \times 44 \mathrm{~g} / \mathrm{mol}=23.6 \mathrm{~g}$

