## Question:

A 3.530 g sample of an unknown hydrate of cobalt(II) bromide is heated until all the water of hydration is removed. The $\mathrm{CoBr}_{2}$ that remains has a mass of 2.362 g . (Include units in your answer.)
(a) How many moles of $\mathrm{CoBr}_{2}$ are in the sample?
(b) How many grams of water were lost in the dehydration?
(c) How many moles of water were lost?
(d) What is the value of " n " in the formula $\mathrm{CoBr}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ ? (1, 2, 3, 4...)

Please provide solution.
Answer:
(a) The amount of moles of $\mathrm{CoBr}_{2}$ can be estimated from the mass of $\mathrm{CoBr}_{2}$ remained:
$n\left(\mathrm{CoBr}_{2}\right)=\frac{m\left(\mathrm{CoBr}_{2}\right)}{M\left(\mathrm{CoBr}_{2}\right)}=\frac{2.362 \mathrm{~g}}{218.73 \mathrm{~g} / \mathrm{mol}}=0.01080 \mathrm{~mol}$
(b) The change in mass of the sample is due to the released water vapor:
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=m_{\text {sample }}-m\left(\mathrm{CoBr}_{2}\right)=3.530 \mathrm{~g}-2.362 \mathrm{~g}=1.168 \mathrm{~g}$
(c) The amount of moles of water lost in dehydration:
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{M\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{1.168 \mathrm{~g}}{18.02 \mathrm{~g} / \mathrm{mol}}=0.06482 \mathrm{~mol}$
(d) The amount of moles of $\mathrm{CoBr}_{2}$ relates to the amount of moles of water as $0.01080: 0.06482=1: 6.0002$, which means that $\mathrm{n}=6$.

The formula of hydrate is $\mathrm{CoBr}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

