Question:

What is the maximum mass of $\mathrm{H}_{2} \mathrm{O}$ that can be produced by combining 66.6 g of each reactant in the equation $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}=4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Answer:

One can calculate the amount of moles of each reagent:

$$
\begin{aligned}
& n\left(\mathrm{NH}_{3}\right)=\frac{m\left(\mathrm{NH}_{3}\right)}{M\left(\mathrm{NH}_{3}\right)}=\frac{66.6 \mathrm{~g}}{17 \mathrm{~g} / \mathrm{mol}}=3.9 \mathrm{~mol} \\
& n\left(\mathrm{O}_{2}\right)=\frac{m\left(\mathrm{O}_{2}\right)}{M\left(\mathrm{O}_{2}\right)}=\frac{66.6 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=2.1 \mathrm{~mol}
\end{aligned}
$$

The limiting reagent is O_{2}, because there is an excess of ammonia NH_{3} in the system. The maximum mass of water obtained according to the reaction equation has to be calculated after the amount of moles of oxygen gas O_{2}. If 5 of oxygen O_{2} produces 6 moles of water $\mathrm{H}_{2} \mathrm{O}$, than 2.1 mole of O_{2} can produce:

$$
m\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{2.1 \mathrm{~mol} \times 6}{5}=2.5 \mathrm{~mol}
$$

The corresponding mass of water is the maximum possible mass of water produced:
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right) \times M\left(\mathrm{H}_{2} \mathrm{O}\right)=2.5 \mathrm{~mol} \times 18 \mathrm{~g} / \mathrm{mol}=45 \mathrm{~g}$

