Question:

Calculate the number of moles (of molecules) in the following samples.(Avogadro's \# $=6.02 \times 10^{23}$ molecules per mole)
(A) 9.93 g H 2 O

Answer:

The mass of one atom of hydrogen is $1.67 \times 10^{-24} \mathrm{~g}$, the mass of one atom of oxygen is $26.72 \times 10^{-}$ ${ }^{24} \mathrm{~g}$. Hence, the mass of one $\mathrm{H}_{2} \mathrm{O}$ molecule is:
$\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \times\left(1.67 \times 10^{-24} \mathrm{~g}\right)+26.72 \times 10^{-24} \mathrm{~g}=30.06 \times 10^{-24} \mathrm{~g}$.
One mole contains 6.02×10^{23} molecules of water, therefore the mass of one mole is:
$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=30.06 \times 10^{-24} \mathrm{~g} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}=18.096 \mathrm{~g} / \mathrm{mole}$
We have 9.93 g , so corresponding the number of moles can be estimated:
$\mathrm{N}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{m}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=9.93 \mathrm{~g} / 18.096 \mathrm{~g} /$ mole $=0.55$ moles

