Answer on Question \#46857 - Chemistry - Physical Chemistry

Question:

For the reaction equilibrium $2 \mathrm{NOBr}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$
If partial pressure of $\mathrm{Br}_{2}=P / 9$ where P is the total pressure, the ratio of $\mathrm{K}_{\mathrm{p}} / \mathrm{P}$ is?

Solution.

An expression for K_{p} for the given reaction is the following:

$$
K_{p}=\frac{P_{N O}{ }^{2} * P_{B r_{2}}}{P_{N O B r r}{ }^{2}}
$$

According to the chemical reaction in the equilibrium conditions the partial pressure of 2 NO will be two times more then the partial pressure of Br_{2}. It means that partial pressure of $2 \mathrm{NO}=2 * \mathrm{P} / 9$. From the conditions it is known that the total pressure is P . The partial pressure of 2 NOBr in the equilibrium conditions will be $2 \mathrm{NOBr}=\mathrm{P}-2^{*} \mathrm{P} / 9-\mathrm{P} / 9=6^{*} \mathrm{P} / 9=2 * \mathrm{P} / 3$

Now we can calculate the constant of equilibrium, K_{p} :

$$
K_{p}=\frac{P_{N O}^{2} * P_{B r_{2}}}{P_{N O B r}{ }^{2}}=\frac{\left(\frac{2 * P}{9}\right)^{2} * \frac{P}{9}}{\left(\frac{2 * P}{3}\right)^{2}}=\frac{\frac{4 * P^{3}}{729}}{\frac{4 * P^{2}}{9}}=\frac{P}{81}
$$

So K_{p} / P will be:

$$
\frac{K_{p}}{P}=\frac{\frac{P}{81}}{P}=\frac{1}{81}
$$

Answer: $\frac{K_{p}}{P}=\frac{1}{81}$

