Answer on Question \#46790 - Chemistry - Physical Chemistry

Question:

Calculate the radius of the third orbit of Li^{2+} ion. Also calculate the energy of the electron in the second orbit of Li^{2+} ion.

Answer:

The radius of the third orbit of Li^{2+} ion can be calculated from the following formula:

$$
r_{n}=\frac{n^{2} \cdot h^{2} \cdot \varepsilon_{0}}{3 \cdot \pi \cdot e^{2} \cdot m}
$$

r_{n} - the radius of the n-th orbit, m;
n - number of the orbit;
h - Planck constant, $6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$;
ε_{0} - dielectric permittivity of vacuum, $8.85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$;
e - charge of the electron, $1.6 \cdot 10^{-19} \mathrm{C}$;
m - mass of the electron, $9.11 \cdot 10^{-31} \mathrm{~kg}$.

$$
r_{n}=\frac{3^{2} \cdot\left(6.63 \cdot 10^{-34}\right)^{2} \cdot 8.85 \cdot 10^{-12}}{3 \cdot 3.14 \cdot\left(1.6 \cdot 10^{-19}\right)^{2} \cdot\left(9.11 \cdot 10^{-31}\right)}=1.59 \cdot 10^{-10} \mathrm{~m}=1.59 \mathrm{~A}^{0}
$$

The energy of the electron in the second orbit of Li^{2+} ion can be calculated from the following formula:

$$
E_{n}=-\frac{9 \cdot m \cdot e^{4}}{8 \cdot n^{2} \cdot h^{2} \cdot \varepsilon_{0}{ }^{2}}=-\frac{9 \cdot 9.11 \cdot 10^{-31} \cdot\left(1.6 \cdot 10^{-19}\right)^{4}}{8 \cdot 2^{2} \cdot\left(6.63 \cdot 10^{-34}\right)^{2} \cdot\left(8.85 \cdot 10^{-12}\right)^{2}}=-4.88 \cdot 10^{-18} \mathrm{~J}
$$

Answer: The radius of the third orbit of Li^{2+} is $1.59 \mathrm{~A}^{0}$ and the energy of the electron in the second orbit of Li^{2+} is $-\mathbf{4 . 8 8 \cdot 1 0 ^ { - 1 8 }} \mathrm{J}$.

