Answer on Question \#46600 - Chemistry - Inorganic Chemistry

Question

From the following titration, calculate molarity of the NaOH solution. Balance equation.
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$
32.00 ml of NaOH is required to completely react with 25.00 ml of 0.150 M HCl

Answer:

Balanced equation is:
$\mathrm{NaOH}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$
Number of moles of HCl in 25.00 ml of 0.150 M HCl solution is:

$$
n=C V
$$

C - Concentration of the solution, $\mathrm{C}=0.150 \mathrm{M}$.
V - Volume of the solution, $\mathrm{V}=25.00 \mathrm{~mL}=0.02500 \mathrm{~L}$.

$$
n(\mathrm{HCl})=0.150 \cdot 0.02500=0.00375 \mathrm{~mol}
$$

According to the reaction equation, 1 mol of NaOH completely reacts with 1 mol of HCl , therefore 0.00375 mol of NaOH are needed to completely react with 0.00375 mol of HCl . Then we should calculate what concentration should be the NaOH solution so that 32.00 ml of this solution contain 0.00375 mol of NaOH .

Molarity (molar concentration) of NaOH solution is:

$$
C(\mathrm{NaOH})=\frac{n(\mathrm{NaOH})}{V(\mathrm{NaOH})}=\frac{0.00375 \mathrm{~mol}}{0.03200 \mathrm{~L}}=0.117 \mathrm{M}
$$

Answer: 0.117 M

