Answer on Question \#46599 - Chemistry - Other

Question

If you have 48.00 g of $\mathrm{K}_{2} \mathrm{CrO}_{4}$, what volume of $0.1500 \mathrm{M} \mathrm{BaCl}{ }_{2}$ solution is needed to completely react with all the $\mathrm{K}_{2} \mathrm{CrO}_{4}$?

Answer:

Balanced reaction equation is:

$$
\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+\mathrm{BaCl}_{2}(\mathrm{aq})=\mathrm{BaCrO}_{4} \downarrow(\mathrm{~s})+2 \mathrm{KCl}(\mathrm{aq})
$$

Molar masses of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ and BaCl_{2} equal:
$M\left(K_{2} \mathrm{CrO}_{4}\right)=2 M(\mathrm{~K})+M(\mathrm{Cr})+4 M(\mathrm{O})=2 \cdot 39.098+52.996+4 \cdot 15.999=195.188 \frac{\mathrm{~g}}{\mathrm{~mol}}$

$$
M\left(B a C l_{2}\right)=M(B a)+2 M(C l)=137.327+2 \cdot 35.45=208.227 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Number of moles of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ equals:

$$
n=\frac{m\left(K_{2} \mathrm{CrO}_{4}\right)}{M\left(K_{2} \mathrm{CrO}_{4}\right)}=\frac{48.00}{195.188}=0.246 \mathrm{~mol}
$$

According to reaction equation 1 mol of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ reacts with 1 mol of BaCl_{2}, so 0.246 mol of BaCl_{2} is needed to completely react with all the $\mathrm{K}_{2} \mathrm{CrO}_{4}$.

The volume of $0.1500 \mathrm{M} \mathrm{BaCl}_{2}$ solution needed is:

$$
V=\frac{n\left(B a C l_{2}\right)}{C}=\frac{0.246}{0.1500}=1.64 \mathrm{~L}
$$

Answer: 1.64 L

