Answer on Question \#46468 - Chemistry - Organic Chemistry

Question:

List the symmetries of the $\mathrm{C}_{6} \mathrm{H}_{6}$ molecule.

Answer:

Benzene has a center of symmetry, (i).

It also has a rotational axis passing through the center and perpendicular to the molecular plane. This axis in fact combines a C_{6}, a C_{3}, and a C_{2} axis. The molecule has two sets of C_{2} axes in the molecular plane:
(a) $3 C_{2}{ }^{\prime}$ axes passing through the center and containing two $\mathrm{C}-\mathrm{H}$ bonds.
(b) $3 C_{2}$ " axes passing through the center and through the center of pairs of bonds on opposite sides of the hexagon.

Benzene has a plane corresponding to the molecular plane which is perpendicular to the C_{6} principal axis of rotation i.e. a sh plane.

It also has 3sv planes associated with the three C_{2} ' axes and containing the principal axis $\left(\mathrm{C}_{6}\right)$ and the center (i).

In addition there are 3sd planes associated with the three $\mathrm{C}_{2}{ }^{\prime \prime}$ and containing the principal axis (C_{6}) and the center (i).

Finally, because there is a C_{6}, C_{3}, and a C_{2} axis perpendicular to the molecular plane, there also exists an S_{6}, S_{3}, and an S axis but the latter is redundant since it is equivalent to the already defined center of inversion, l.

