Question:

Calculate the pH of 1.0 M solution of acetic acid. To what volume one liter of this solution be diluted so that the pH of the solution that is formed will be twice of original volume. $\left[\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right]$

Answer:

Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid and it dissociated in water solution to some extent according to equation:
$\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
Since the process is reversible, the constant of equilibrium of this process $K_{a}=\frac{\left[\mathrm{H}^{+} \llbracket \mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

The degree of dissociation for $\mathrm{CH}_{3} \mathrm{COOH}$ is not great, than we can neglect the amount of $\mathrm{CH}_{3} \mathrm{COOH}$ that was ionized comparing with the initial concentration. And, according to the reaction equation, the amount of H^{+} and $\mathrm{CH}_{3} \mathrm{COO}^{-}$formed are the same. Using this consideration:

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}} \Rightarrow \sqrt{\left[\mathrm{H}^{+}\right]}=K_{a} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}
$$

We have, that $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}=1.0 \mathrm{M}$ and $\mathrm{K}_{\mathrm{a}}=1.8 \cdot 10^{-5}$. Therefore,

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{a} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}}=\sqrt{1.8 \cdot 10^{-5} \times 1.0}=0.0042 \mathrm{M}
$$

pH function is a negative logarithm from $\left[\mathrm{H}^{+}\right]$:
$p H=-\log \left[H^{+}\right]=-\log (0.0042)=2.38$
pH after the dilution has to be twice of original volume $\mathrm{pH}=2.38 \times 2=4.76$. The corresponding H^{+} concentration is:
$p H=-\log \left[H^{+}\right] \Rightarrow\left[H^{+}\right]=10^{-p H}=10^{-4.76}=1.74 \cdot 10^{-5} \mathrm{M}$
The corresponding initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$, which produced this amount of H^{+}:
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{a} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}} \Rightarrow\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{a}}=\frac{\left(1.74 \cdot 10^{-5}\right)^{2}}{1.8 \cdot 10^{-5}}=1.68 \cdot 10^{-5} \mathrm{M}$
The amount of moles remains constant, only volume of the solution has changed. If the initial volume $\mathrm{V}_{1}=1$ L , hence:
$C_{1} V_{1}=C_{2} V_{2} \Rightarrow V_{2}=\frac{C_{1} V_{1}}{C_{2}}=\frac{1 \times 1.0}{1.68 \cdot 10^{-5}} \approx 6 \cdot 10^{5} \mathrm{~L}$

