Answer on Question \#46418, Chemistry, Other

Task:

Calculate the molecular formula of a compound that contains 34.5 g of carbon and 5.76 of hydrogen and has a molecular weight of 56.

Answer:

$\mathrm{M}(\mathrm{C})=12 \mathrm{~g} / \mathrm{mol}$
$M(H)=1 \mathrm{~g} / \mathrm{mol}$
$C=\frac{34,5 \mathrm{~g}}{12 \mathrm{~g} / \mathrm{mol}}=2,875 \mathrm{~mol}$
$H=\frac{5.76 \mathrm{~g}}{1 \mathrm{~g} / \mathrm{mol}}=5.76 \mathrm{~mol}$
The calculated ratio on a compound is $\mathrm{H}: \mathrm{C}=2: 1$. So, the empirical formula is CH_{2}.
The molar mass of this fragment will be: $\mathrm{M}\left(\mathrm{CH}_{2}\right)=14 \mathrm{~g} / \mathrm{mol}$.
As it had been said, molecular weight of a compound is 56 .
So, the amount of fragments will be: $n=56 / 14=4$.
The molecular formula of a compound is $\mathrm{C}_{4} \mathrm{H}_{8}$.

