Answer on Question \#45938, Chemistry, Physical Chemistry

A STANDARD HARD WATER CONTAIN 15 gm of CaCO_{3} per litre. 20 ml of this standard water required 25 ml of EDTA solution. 100 ml of an unknown sample of water required 18 ml EDTA solution. The same sample water after boiling required 12 ml EDTA solution. Calculate the temporary hardness of the given sample water in term of ppm.

Solution:

The standard water contains 15 g of $\mathrm{CaCO}_{3} / \mathrm{I}$.
1000 ml of standard hard water (SHW), therefore, contain $15,000 \mathrm{mg}$ of CaCO_{3}. 1 ml of standard water $=15,000 / 1000=15 \mathrm{mg}$ of CaCO_{3} equivalent.

25 ml of EDTA solution $=20 \mathrm{ml}$ of SHW contains $20 \cdot 15=300 \mathrm{mg}$ of CaCO_{3} equivalent.
1 ml of EDTA solution $=300 / 25=12 \mathrm{mg}$ of CaCO_{3} equivalent.

Calculation of hardness of water:
100 ml of water $\equiv 18 \mathrm{ml}$ of EDTA solution
$\equiv 18 \cdot 12=216 \mathrm{mg}$ of CaCO_{3} equivalent.
1000 ml of water $\equiv 2160 \mathrm{mg}$ of CaCO_{3} equivalent.
Hence, hardness of water $=2160 \mathrm{mg} / \mathrm{l}$ or ppm.

Calculation of permanent hardness of water:
100 ml of water (after boiling) $\equiv 12 \mathrm{ml}$ of EDTA solution $\equiv 12 \cdot 12=144 \mathrm{mg}$ of CaCO_{3} equivalent.
1000 ml of water $\equiv 1440 \mathrm{mg}$ of CaCO_{3} equivalent.
Hence, permanent hardness of water $=1440 \mathrm{ppm}$.

Calculation of temporary hardness of water:
Temporary hardness of water $=($ Total - Permanent $)$ hardness
Thus,
Temporary hardness of water $=2160-1440=720 \mathrm{ppm}$.

Answer: Temporary hardness of water = $\mathbf{7 2 0} \mathbf{~ p p m}$.

