Answer on Question\#45844-Chemistry, Organic Chemistry

Question:

1) We need 5 L of $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{MW}=141.96)$ solution for today's assay. How many grams should I weigh out?
2) We need 1 L of 50 mM Guaiacol ($\mathrm{MW}=124.1$) solution for today's assay. How many grams should I weigh out?

Solution:

1)

Molarity, symbolized M, is defined as the number of moles of solute per liter of solution: $M=$ (moles of solute)/(liters of solution)
$0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution means that there is 0.2 moles of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ per 1 liter of solution.

Therefore, we need to add 1 mole of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ to prepare 5 L of 0.2 M solution:
moles of solute $=M \times($ liters of solution $)=(0.2 \mathrm{~mol} / \mathrm{t}) \times 5 \mathrm{t}=1 \mathrm{~mol}$

One mole of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is found to be $\mathbf{1 4 1 . 9 6}$ grams (MW).

2)

50 mM Guaiacol solution means that there is 50 mmoles of Guaiacol per 1 liter of solution.

Therefore, we need to add 50 mmoles of Guaiacol to prepare 1 L of 50 mM solution:
moles of solute $=M \times($ liters of solution $)=(50 \mathrm{mmol} / \mathrm{t}) \times 1 \mathrm{t}=1 \mathrm{mmol}$

One mole of Guaiacol is found to be 124.1 grams (MW).
Mass of $50 \mathrm{mmoles}\left(50 \times 10^{-3} \mathrm{moles}\right)$ of Guaiacol is:
$\mathrm{m}=($ molar mass $) \times($ number of moles $)=(124.1 \mathrm{~g} / \mathrm{mol}) \times 50 \times 10^{-3} \mathrm{~mol}=\mathbf{6 . 2 0 5} \mathrm{g}$

Answer: You need 141.96 grams of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 6.205 grams of Guaiacol.

