Answer on Question #43459 - Chemistry - Inorganic Chemistry

Question:

Consider the reaction

 $C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O$

How many grams of O_2 are consumed when C_6H_{12} is burned to yield 2.5 grams of CO_2 ? Give your answer in 1 decimal.

Solution:

Number of moles of CO₂ is calculated as

$$n_{CO_2} = \frac{m_{CO_2}}{M_{CO_2}} = \frac{2.5 \ g}{44.0 \ g/mol} = 0.057 \ mol$$

where M_{CO_2} – molar weight of CO₂.

As is clear from the reaction stoichiometry, $\bf 9$ moles of O_2 are consumed to yield $\bf 6$ moles of CO_2 . Having calculated the actual number of moles of CO_2 we can write down the proportion:

6 mol (CO_2) – 9 mol (O_2)

 $0.057 \text{ mol (CO}_2) - n_{O_2} \text{ mol (O}_2),$

whence

$$n_{O_2} = \frac{0.057 \cdot 9}{6} = 0.085 \, mol$$

Mass of O₂ consumed is

$$m_{O_2} = n_{O_2} \cdot M_{O_2} = 0.085 \cdot 32.0 = 2.7 g$$

where M_{O_2} – molar weight of O_2 .

Answer: 2.7 g