Answer on Question \#43459-Chemistry - Inorganic Chemistry

Question:

Consider the reaction
$\mathrm{C}_{6} \mathrm{H}_{12}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
How many grams of O_{2} are consumed when $\mathrm{C}_{6} \mathrm{H}_{12}$ is burned to yield 2.5 grams of CO_{2} ? Give your answer in 1 decimal.

Solution:

Number of moles of CO_{2} is calculated as

$$
n_{C O_{2}}=\frac{m_{C O_{2}}}{M_{C O_{2}}}=\frac{2.5 \mathrm{~g}}{44.0 \mathrm{~g} / \mathrm{mol}}=0.057 \mathrm{~mol}
$$

where $\mathrm{M}_{\mathrm{CO}_{2}}$ - molar weight of CO_{2}.
As is clear from the reaction stoichiometry, 9 moles of O_{2} are consumed to yield 6 moles of CO_{2}. Having calculated the actual number of moles of CO_{2} we can write down the proportion:
$6 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)-9 \mathrm{~mol}\left(\mathrm{O}_{2}\right)$
$0.057 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)-n_{O_{2}} \mathrm{~mol}\left(\mathrm{O}_{2}\right)$,
whence

$$
n_{O_{2}}=\frac{0.057 \cdot 9}{6}=0.085 \mathrm{~mol}
$$

Mass of O_{2} consumed is

$$
m_{O_{2}}=n_{O_{2}} \cdot M_{O_{2}}=0.085 \cdot 32.0=2.7 \mathrm{~g}
$$

where $M_{O_{2}}$ - molar weight of O_{2}.
Answer: 2.7 g

