Answer on Question #43439 - Chemistry - Inorganic Chemistry

Question:

6.3 g of MgCl₂ is dissolved in 200 mL of water. What is the resulting concentration of Cl–(aq) ions?

The atomic weigth of Mg is 24.3, that of Cl is 35.5. Give your answer in $mol \cdot L^{-1}$ and in 2 decimals.

Solution:

MgCl₂ dissociates as follows:

$$MgCl_2 \leftrightarrow Mg^{2+} + 2Cl^{-}$$

We see that each molecule of magnesium chloride dissociates producing 2 Cl⁻ ions, i.e. chloride ions' concentration is twice as big as that of magnesium chloride.

Molar concentration of MgCl₂ can be found from the expression:

$$C_M = \frac{n}{V} = \frac{m}{MV}$$

n - Number of moles of MgCl₂;

V - The volume of the solution, V = 200 mL = 0.2 L;

m - The mass of MgCl₂ dissolved, <math>m = 6.3 g;

M – Molar mass of MgCl₂, M = M(Mg) + 2M(Cl) = 24.3 + 2.35.5 = 95.3 g/mol.

$$C_M(MgCl_2) = \frac{6.3}{95.3 \cdot 0.2} = 0.33 \ mol/L$$

So, the resulting concentration of Cl⁻(aq) ions is:

$$C_M(Cl^-) = 2C_M(MgCl_2) = 2 \cdot 0.33 = 0.66 \ mol/L$$

Answer: 0.66 mol/L.