Answer on Question \#43304, Chemistry, Other

Question:

The rate constant for a second order reaction (second order in A) is $k=0.132 \mathrm{~L} / \mathrm{mol} / \mathrm{s}$. What is the rate of the reaction when the concentration of A is $0.158 \mathrm{~mol} / \mathrm{L}$?

Solution:

Generally, for a reaction of the form
$\mathrm{aA}+\mathrm{bB}+\ldots \rightarrow$ products
the rate law will be
$r=k[\mathrm{~A}]^{a}[\mathrm{~B}]^{b} \ldots$
In this expression, the k is the reaction rate coefficient or rate constant, the exponents a and b are the reaction orders and depend on the reaction mechanism, $[A]$ and $[B]$ is molar concentrations of species A and B.
If rate of reaction depends on only one reactant concentration, rate law equation simplifies to $r=k[\mathrm{~A}]^{a}$.
We can use this equation:
$r=0.132 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s} \times(0.158 \mathrm{~mol} / \mathrm{L})^{2}=0.00330 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=3.30 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$

Answer:

The rate of the reaction is $3.3 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$

