Answer on Question \#43191-Chemistry - Inorganic chemistry

Question:

1 gram of a mixture of CaCO_{3} and NaCl reacts completely with 120 ml of 0.1 N HCl . What is the percentage of NaCl ?

Solution:

HCl reacts only with one component $\left(\mathrm{CaCO}_{3}\right)$ of the two components of mixture $\left(\mathrm{CaCO}_{3}+\mathrm{NaCl}\right)$ according to the equation:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

If we calculate the mass of CaCO_{3} that reacts with HCl , we can determine the mass and percentage of NaCl .

Our path:

volume of HCl solution	$\stackrel{1}{\rightarrow}$	equivalents of HCl		moles of HCl	$\xrightarrow{3}$	moles of CaCO_{3}	$\stackrel{4}{\rightarrow}$	$\begin{aligned} & \text { mass } \\ & \text { of } \\ & \mathrm{CaCO}_{3} \end{aligned}$	5	mass and percentage of NaCl

1. $0,1 \mathrm{~N} \mathrm{HCl}$ means that is 0,1 equivalents of HCl per 1 liter of solution, 0,1 eq $\mathrm{HCl} / 1 \mathrm{I}$,
$120 \mathrm{ml}=0,12 \mathrm{l}$, $0,12+\times 0,1$ eq $\mathrm{HCl} / 1+=0,012$ eq HCl
2. In case of HCl 1 equivalent $=1 \mathrm{~mole}$, then 0,012 equivalents $=0,012$ moles
3. From the balanced equation we see that 1 mole of CaCO_{3} reacts with 2 moles of HCl :
$1 \mathrm{~mol} \mathrm{CaCO}_{3} / 2 \mathrm{~mol} \mathrm{HCl}$;
then 0,012 moles of HCl react with:
$0,012 \mathrm{~mol} \mathrm{HCl} \times 1 \mathrm{~mol} \mathrm{CaCO}_{3} / 2 \mathrm{~mol} \mathrm{HCl}=0,006 \mathrm{~mol} \mathrm{CaCO} 3 ;$
4. Mass of 1 mole of CaCO_{3} is $40+12+16 \times 3=100 \mathrm{~g}$
$100 \mathrm{~g} \mathrm{CaCO}_{3} / 1 \mathrm{~mol} \mathrm{CaCO}_{3}$;
mass of 0,006 moles of CaCO_{3} is
$0,006 \mathrm{~mol} \mathrm{CaCO}_{3} \times 100 \mathrm{~g} \mathrm{CaCO}_{3} / 1 \mathrm{~mol} \mathrm{CaCO}_{3}=0,6 \mathrm{~g} \mathrm{CaCO}_{3} ;$
5. Mass of $\mathrm{NaCl}=$ (mass of mixture) - (mass of CaCO_{3})
$1-0,6=0,4 \mathrm{~g}$
percentage of $\mathrm{NaCl}=($ mass of NaCl$) /($ mass of mixture $) \times 100 \%$
$\mathrm{w}_{\mathrm{NaCl}}=0,4 / 1 \times 100 \%=40 \%$
Answer: The percentage of NaCl is 40%.
