Answer on Question #43057 - Chemistry - Other

Question:

The K_{sp} value for lead sulfide, PbS, is $1.0 \cdot 10^{-28}$. What is the concentration of Pb²⁺ in a saturated solution of lead sulfide?

- a) $1.0 \cdot 10^{-56}$
- b) 1.0 · 10⁻¹⁴
- c) 3.3 · 10⁻²⁹
- d) 0.5 · 10⁻¹⁴

Answer:

Lead sulfide dissotiation equation is PbS \leftrightarrow Pb²⁺ + S²⁻. Thus, solubility product constant expression for PbS is $K_{sp} = [Pb^{2+}][S^{2-}]$. As is clear from the dissociation equation, $[Pb^{2+}] = [S^{2-}]$. The solubility product constant expression for PbS may be written as $K_{sp} = [Pb^{2+}]^2$, whence

$$[Pb^{2+}] = \sqrt{K_{sp}} = \sqrt{1.0 \cdot 10^{-28}} = 1.0 \cdot 10^{-14}$$

Correct answer is b) 1.0 · 10⁻¹⁴