Answer on Question \#43040 - Chemistry - Other

Question:

10 mole of $\mathrm{Ba}(\mathrm{NO} 3) 2$ dissolves in water to give how many NO3- ions?
$1-6.02 \times 10$ to the 23
2-6.02 x 10 to the minus 23
$3-6.02 \times 10$ to the 24
$4-1.204 \times 10$ to the 23
$5-1.204 \times 10$ to the 25

What I want to know is how do I work out the question.
Answer:
Dissolution equation for $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$:

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=\mathrm{Ba}^{2+}+2 \mathrm{NO}_{3}^{-}
$$

We see that each molecule of barium nitrate dissociates producing $2 \mathrm{NO}_{3}{ }^{-}$ions. So, one mole of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ produces 2 moles of NO_{3}^{-}ions, and 10 mol of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ produce 20 mol of $\mathrm{NO}_{3}{ }^{-}$ions.

One mole of any substance has 6.02×10^{23} particles (atoms, molecules or ions; Avogadro constant). So, we make a proportion:

$$
\begin{gathered}
1 \mathrm{~mol} \text { has } 6.02 \times 10^{23} \text { particles } \\
20 \mathrm{~mol} \text { of } \mathrm{NO}_{3}^{-} \text {ions }-x \mathrm{NO}_{3}^{-} \text {ions } \\
x=\frac{20 \cdot 6.02 \cdot 10^{23}}{1}=1.204 \cdot 10^{25}
\end{gathered}
$$

So, 10 mole of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ dissolves in water giving $1.204 \cdot 10^{25} \mathrm{NO}_{3}{ }^{-}$ions.
Answer: 5-1.204 x 10 to the 25 .

