Answer on Question \#42843, Chemistry, Physical Chemistry

Question:

with 0.05 moles of magnesium nitride and 2.00 liters of h20 how many moles of hydroxide salt would be produced

Answer:

Magnesium nitride is $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
Water $-\mathrm{H}_{2} \mathrm{O}$. 2 liters contain $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=\rho\left(\mathrm{H}_{2} \mathrm{O}\right)^{*} \mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=111$ moles, where V is volume, $\rho-$ density of water.

Reaction:

Real:	0.05 moles	111 moles	X moles
	$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{Mg}(\mathrm{OH})_{2} \downarrow+2 \mathrm{NH}_{3} \uparrow$		
Theoretical:	1 mole	6 moles	3 moles

Here is excess of water (much more than $6^{*} 0.05=0.3$ moles), so the amount of magnesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$ is calculated using the amount of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$.

There is a proportion from stoichiometry of reaction equation:
1 mole of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ gives 3 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$

So, 0.05 moles of of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ would give $\mathbf{X}=3^{*} 0.05=0.15$ moles of $\mathrm{Mg}(\mathrm{OH})_{2}$

