## Answer on Question \#42773 - Chemistry - Physical Chemistry

## Question:

The decomposition of ammonium carbamate takes place according to
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s})<-->2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) ;$
Show that if all $\mathrm{NH}_{3}$ and $\mathrm{CO}_{2}$ results from the decomposition of $\mathrm{NH}_{2} \mathrm{COONH}_{4}, \mathrm{Kp}=$ $(4 / 27) P^{3}$, where $P$ is total pressure in equilbrium.

## Solution:

The total pressure of a mixture of gases is equal to the sum of the partial pressures. If $\mathbf{P}$ is the total pressure in equilbrium system, then accoding to the chemical reaction the pressure of $\mathrm{CO}_{2}$ is $\mathrm{P} / 3$ and pressure of $\mathrm{NH}_{3}$ is $2 * P / 3$. Hence the equilibrium constants Kp can be expressed as follows:

$$
\left.K_{p}=P_{N H_{3}} * P_{C O_{2}}=\left(\frac{2}{3} P\right)^{2} * \frac{1}{3} P\right)^{1}=\frac{4}{27} P^{3}
$$

Answer: $K_{p}=\frac{4}{27} P^{3}$

