Answer on Question \#42379-Chemistry - Other

Question:

A quantity of chlorine gas occupies a volume of 50 L at 27 c and 721 kPa . How many gram of chlorine gas are present?

Answer:
The ideal gas law is:

$$
P V=n R T
$$

where P is the absolute pressure of the gas, V is the volume of the gas, n is the amount of substance of gas (measured in moles), R is the ideal, or universal, gas constant, and T is the absolute temperature of the gas.

Absolute pressure of chlorine gas equals:

$$
P=721 \mathrm{kPa}=721000 \mathrm{~Pa}
$$

Volume of chlorine gas equals:

$$
V=50 L=5 \cdot 10^{-2} \mathrm{~m}^{3}
$$

Absolute temperature of chlorine gas is:

$$
T=27^{\circ} \mathrm{C}=300 \mathrm{~K}
$$

That's why the number of moles of chlorine gas is:

$$
n=\frac{P V}{R T}=\frac{721000 \cdot 5 \cdot 10^{-2}}{8.314 \cdot 300}=14.45 \mathrm{~mol}
$$

Mass of chlorine gas equals:

$$
m=n \cdot M
$$

where M is the molar mass of chlorine gas, $\mathrm{M}=71 \mathrm{~g} / \mathrm{mol}$.
So the mass of 14.45 mol of chlorine gas equals:

$$
m=14.45 \cdot 71=1025.95 \mathrm{~g}
$$

Answer: $\mathrm{m}\left(\mathrm{Cl}_{2}\right)=1025.95 \mathrm{~g}$.

