Answer on Question \#42320, Chemistry, Other

Task:

What quantity of $0.25 \mathrm{M} \mathrm{HNO}_{3}$ can be neutralized by 0.10 liters of 0.50 M NaOH ?

Answer:

$\mathrm{HNO}_{3}+\mathrm{NaOH}=\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

$$
\tilde{N}_{M}=\frac{v}{V} \quad V=\frac{v}{\tilde{N}_{M}} \quad v=\tilde{N}_{M} \cdot V
$$

where C_{M} - molarity of a solution, M;
v - amount of moles of a substance, moles;
V - volume of a solution, I .
According to the equation, the amount of HNO_{3} moles is equal to the amount of NaOH moles.
That is why:
$\mathrm{C}_{\mathrm{M}}\left(\mathrm{HNO}_{3}\right) \cdot \mathrm{V}\left(\mathrm{HNO}_{3}\right)=\mathrm{C}_{\mathrm{M}}(\mathrm{NaOH}) \cdot \mathrm{V}(\mathrm{NaOH})$
$\mathrm{V}\left(\mathrm{HNO}_{3}\right)=\frac{\mathrm{C}_{\mathrm{M}}(\mathrm{NaOH}) \cdot \mathrm{V}(\mathrm{NaOH})}{\mathrm{C}_{\mathrm{M}}\left(\mathrm{HNO}_{3}\right)}$
$\mathrm{V}\left(\mathrm{HNO}_{3}\right)=\frac{0.10 \cdot 0.50}{0.25}=0.20 \mathrm{I}$

